P(x)=f(x0)(x−x0)00!+f′(x0)(x−x0)11!+f″(x0)(x−x0)22!+⋯
Sample Application: Please see numericalmethods.xls
ln(1.10)=ln(1+0.10)⇒ln(1+x), x=0.10
ln(1+x)=∫11+xdx=∫1−x+x2−x3+x4−⋯=x−x22+x33−x44+x55−⋯
If x=0.10, then
g(x)=ln(1+x)=x−x22+x33−x44+x55−⋯=0.10−0.1022+0.1033−0.1044+0.1055−⋯=0.09531
And as you involve higher polynomials, you will arrive at higher or exact answers.
No comments:
Post a Comment